Posterior Cruciate Ligament Injuries

Anatomy

- Origin: Lateral border of the medial femoral condyle
- Insertion: 1.5 cm below the top of the tibia in the PCL facet

Anatomy

- 2 bundles
 - Anterolateral
 - Larger
 - Tightens in flexion
 - Posteromedial
 - Smaller
 - Tightens in extension
 - 38 mm long
 - 13 mm wide

Biomechanics of the native PCL

- Primary restraint to posterior tibial translation at 30 and 90 degrees*
 - 90-95% of tibial translation force
 - LCL, popliteus and MCL are secondary posterior restraints
- Secondary restraint to IR, varus-valgus instability forces
 - PLC, MCL

Mechanism of Injury

Hyperextension injury

Fall onto a flexed knee with foot In plantarflexion

Mechanism

Schulz, et al. Arch Orthop Trauma Surg. 2003.

• Major Trauma

• Sporting Injuries

Fanelli, et al. Arthroscopy 1995

- 222 patients with acute hemarthrosis in ER
 - 38% (85 of 222) had PCL injuries
 - 55% from trauma
 - 33% from sports
 - 95% (82/85) had multiple ligament injury

Schulz, et al. Arch Orthop Trauma Surg. 2003.

Associated Injuries

- More common in MVA than in sports
- PLC corner injury is most common combined injury
- Knee dislocation, N/V damage should be ruled out

- History
 - Traumatic knee event, but often cannot exactly recall injury
 - No clear 'pop' as with ACL injuries
 - Often continue to play sports after injury
 - Mild complaints of effusion
 - Instability complaints not as common

Delay to diagnosis is common

	All patients (n=494)	Group I <30 days (n=54)	Group II <1 year (n=199)	Group III 1–5 years (n=119)
Time between injury and first visit (months)	44.4±68.6	0.45±0.3	4.9±2.8	30.1±13.3
Age at time of injury (years)	27.5±9.9	28.9±8.3	29.8±10.4	28.6±9.9
Male/female	392/102	47/7	168/31	85/34
(percent)	(79.4/20.6)	(87.0/13.0)	(84.4/15.6)	(71.4/28.6)
Injury mechanisms:				
Traffic accident	224 (45.3%)	11 (20.4%)	82 (41.2%)	57 (47.9%)
Athletic injury	197 (39.9%)	37 (68.5%)	83 (41.7%)	42 (35.3%)
Other	59 (11.9%)	5 (9.3%)	30 (15.1%)	16 (13.4%)
Unknown	14 (2.8%)	1 (1.9%)	4 (2.0%)	4 (3.4%)

Schulz, et al. Arch Orthop Trauma Surg. 2003.

- Physical Exam
 - Gait and alignment
 - Tibia Vara, genu recurvatum
 - Inspection and palpation
 - Anterior tibial bruising
 - Effusion (usually mild)
 - ROM (lack terminal extension)
 - Assume multiple ligament injury in all cases of acute knee injury

- Posterior Drawer Test
 - Knee flexed 90 degrees, hip flexed 30
 - Foot neutral, examiner sitting on foot
 - Reduce knee, then direct force posteriorly

• Posterior Drawer Test

Posterior Drawer Test

Grade	Position of Tibial Plateau vs Medial Femoral Condyle	Translation (mm)
1	Anterior	0-5
II	Flush	6-10
111	Posterior	>10

- Quadriceps Active Test
 - Knee flexed 90 degrees, examiner holds foot
 - Active quad contraction will shift tibia anteriorly more than 2 mm in PCL deficient knee
 - 54% sensitive, 97% specific

• Quadriceps Active Test

Posterior Sag Test

Posterior Sag Test

Posterior Sag Test

- PLC injuries
 - Best evaluated with Dial test
 - Patient prone, knees flexed to 30
 - Increase of more than 10 is abnormal
 - Repeat at 90 degrees
 - Positive suggests PLC and PCL injury

Rubenstein, et al. AJSM 1994

- 39 patients, 18 with PCL, 9 with ACL, 12 normal knees
 - Accuracy: 96%, 90% sensitivity 99% specificity
 - Better for grade II and III
 - 80% agreement on grade
 - Posterior drawer test was best overall

• Posterior sag of the tibia on femur

PCL avulsion

LCL avulsion injury

Pelligrini-Steida lesion

Posterior tibial stress test

Axial T2 fat suppressed image

Axial T1 image

dashboard injury showing bruising to anterior tibia

Accuracy of MRI for PCL tears

- Fischer, et al. JBJS 1991
 - RCT of 1014 patients
 - 99% for PCL
 - 93% for ACL
 - 89% for medial meniscus
 - 88% for lateral meniscus

Chronic PCL Tears

- Servant, et al. Knee 2004
 - MRI was performed on 10 knees with a clinical and arthroscopic diagnosis of a PCL injury sustained at least 6 months previously.
 - Seven experienced musculoskeletal radiologists
 - accuracy in diagnosing a PCL injury was 57% (40-80%).

8 year old tear Grade III laxity 4 of 7 correct

14 year old tear Grade II laxity 0 of 7 correct

Chronic PCL Tear -elongated, posterior sag Normal PCL -Short, thick -No posterior sag

Treatment

• Non operative

• Operative

Rational for non-operative management

- Often found as incidental finding – MRI often return to 'normal'
- Most athletes return to normal function
- Good patient satisfaction
- PCL surgery does not restore laxity

- Parolie and Bergfeld, AJSM 1986
 - 25 patients, 6.2 year followup
 - 80% of the patients were satisfied with their knees and 84% had returned to their previous sport (68% at the same level of performance, 16% at a decreased level of performance)
 - Satisfaction correlated with quad strength, not instability
 - 100% satisfaction if quad on injured side > contralateral side

- Shelbourne et al. Arthroscopy 2005
 - Prospective cohort study, 271 pts
 - 100 grade I, 43 grade 1.5, 128 grade II
 - No grade III injuries
 - -7.8 year follow-up
 - Subjective outcomes

- Shelbourne et al. Arthroscopy 2005
- subjective outcomes independent of laxity
- Good/excellent/improving in 56% patients
- 12% decreasing function

Shelbourne, et al. Arthroscopy, 2005

- 50% return to sports at same level- 30% return to sport at lower level

Activity description	Grade 1		Grade 1.5		Grade 2	
	Ν	(%)	Ν	(%)	Ν	(%)
Increased activity	1	(2)	3	(8)	1	(2)
Same sport/activity at the same level of intensity	23	(46)	17	(46)	22	(48)
Same sport/activity at a lower level of intensity	18	(36)	9	(24)	15	(33)
Lower recreational sports/activities	7	(14)	8	(22)	7	(15)
Not able to do sports but no problem with activities of daily living	0	(0)	0	(0)	1	(2)
Difficulty with activities of daily living	1	(2)	0	(0)	0	(0)

TABLE 5 Change in Activity Level From Preinjury to Follow-up by PCL Laxity Grade

Non operative rehab protocol

- Knee immobilizer for comfort
 Wear until active quad function
- ROM
- Quad strengthening
 - Add Hamstrings when full ROM achieved
- Full activity at 8 weeks
- Yearly XR to eval for changes

Rationale for PCL reconstruction

- Few non-operative studies on Grade III PCL injuries
- Increased knee pain and PF arthritis
- Abnormal kinematics and contact pressures in a PCL-deficient knee
 - Does current surgical technique prevent this?

- Skyhar, et al. JBJS 1993
 - Cadaveric study sectioning PCL and PLC in 10 knees
 - Elevated PF and medial compartment pressures

Rationale for reconstruction

- Gill, et al. AJSM 2004
 - 8 cadaveric knees
 - Tibial tunnel technique
 - Measurement of PF forces

Gill, et al. AJSM 2004

Figure 4. Contact pressure distributions of a left knee at 90° flexion under intact, PCL-deficient, and PCL-reconstructed conditions with simulated combined quadriceps and hamstring loading (400/200 N).

- Increased PF forces with deficient and reconstructed knee
- Incorrect (medial) tunnel placement resulting in high PF forces

Rationale for Reconstruction

- Raminiraka, et al. Clin Biomech 2005
 - Finite element analysis to compare
 - Native
 - Resected
 - single bundle
 - double bundle

Raminiraka, et al. Clin Biomech 2005

- High forces medially and in PF joint
- May lead to early arthritis

- Strobel, et al. Arthroscopy 2003
 - 181 patients with knee a/s after PCL injury
 - Increased MFC and PF OA
 - 40% MFC lesions at 1 year
 - 77% had MFC lesion at 5 years
 - 47% patella lesions

• Strobel, et al. Arthroscopy 2003

MFC Chondomalacia

• Strobel, et al. Arthroscopy 2003

Patella chondromalacia

Operative Management of PCL Injuries

- Indications
 - Multiple ligament injury
 - Grade III laxity
 - Symptomatic instability
 - Failure of conservative management

Outcomes following PCL reconstruction

- Cooper, et al. AJSM 2004
 - Single bundle, inlay technique, prospective
 - 41 patients, most were combined procedure (85%)
 - PD examination: 0 (normal) in 9 patients, 1+ in 25 patients, 2+ in 7 patients, and none >2+
 - Stress XR: side-to-side difference of 4.11 mm (-2 to 10 mm)
 - Better knee scores with allograft

Outcomes following PCL reconstruction

- Seikya, et al. Arthroscopy 2006
 - -21 patients, single bundle, transtibial
 - Better outcomes with subacute vs. chronic
 - 57% of the patients had normal/near normal knee function
 - 62% had a normal/near normal activity level
 - 62% had less than a 3-mm 31% had a 3- to 5-mm laxity.
 - 75% normal/near normal XR

Controversies in PCL reconstruction

- Why does PCL reconstruction not restore normal AP laxity?
 - What is the ideal graft type?
 - What operative technique is best?
 - Is one bundle better than two?
 - How should the graft be tensioned?
 - Where should the tunnels be placed?

Controversies

- Inlay vs. Transtibial?
- Single vs. Double Bundle?

Inlay vs. Transtibial technique

- Bergfeld, et al. AJSM 2001
 - 6 pairs of cadaveric knees
 - 6 inlay, 6 transtibial

- mechanical degradation in the tunnel group but not in the inlay group
- Less AP laxity in the inlay group vs. tunnel group from 30 - 90°

Inlay vs. Transtibial technique

Bergfeld, et al. AJSM 2001

Figure 8. The effects of repetitive loading (72 cycles) at 90° of knee flexion with neutral tibial rotation. Laxity in the intact knee is compared with laxity immediately after reconstruction (initial) and after 72 loading cycles.

Inlay vs. Transtibial Technique

- Markolf, et al. JBJS 2002
 - 62 knees, 31 inlay, 31 transtibial
 - 2000 cycles of tensile force of 50 to 300 N with the angle of pull at 45°
 - 10/31 transtibial grafts failed vs. 0/31
 - 40% reduction of thickness at 'killer corner'
 - 3.9 mm increase in graft length with transtibial vs. inlay
 - "inlay technique...was superior with respect to graft failure, graft thinning, and permanent increase in graft length."

Inlay vs. Transtibial technique

- Seon, et al. Arthroscopy 2006
 - -21 transtibial, 20 inlay
 - -2 year follow up
 - Good subjective results with both techniques, no significant difference in laxities post op (3.3 vs. 3.7mm)

Inlay vs. Transtibial technique

- MacGilliravay, et al. Arthroscopy 2006
 - 29 patients, multiple types of grafts
 - postoperative posterior drawer test result improved in 4 of 7 (57%) in the inlay group, and in 5 of 13 (38%) in the endoscopic group
 - KT-100:, 5.5 mm (inlay) and 5.9 mm (endoscopic).
 - There was a trend toward increased radiographic progression of Fairbanks changes in the medial and patellofemoral compartments in the endoscopic group, but the numbers did not reach statistical significance (P = .057)

Single vs. Double Bundle

- A dual-bundle reconstruction more closely replicates PCL anatomy, and should therefore better restore normal knee biomechanics.
 - Harner, et al. AJSM (2000)
 - Race and Amis, JBJS-B (1997)

- PM may increase stability in extension
- Methodology of studies—low pretension may affect results

Single vs. Double Bundle

- Clinical Studies
 - Noyes, et al. JBJS (2005)
 - Q-PT autograft double bundle reconstruction
 - 19 patients
 - Excellent subjective outcomes (18/19)
 - 14 knees <5 mm posterior translation
 - <u>5 knees >5 mm posterior translation</u>
 - Wang, et al. Injury (2004)
 - Double blind comparison of single vs. double bundle
 - No difference in subjective or objective outcomes

Conclusions

- Always look for combined ligament injuries
- Conservative treatment for Grade I and II
 (?) injuries
- Single bundle inlay for Grade III injuries
- Multicenter RCT needed to determine best treatment for PCL injuries

The End