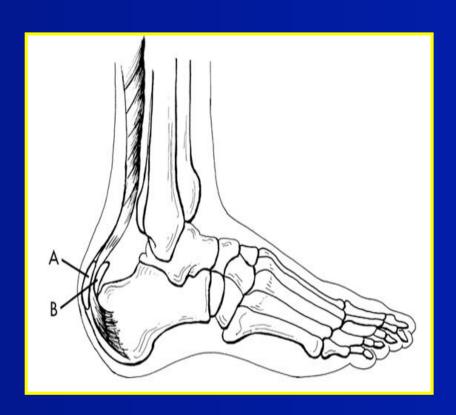

Acute Achilles Tendon Rupture


Achilles: History

- Greek warrior in Trogan war
- Mother dipped in river Styx to make immortal
- Invulnerable except heel
- Killed by Paris

Anatomic Considerations

- Achilles tendon
- Paratenon
- Retro Achilles bursa (a)
- Retro Calcaneal bursa (b)
- Posterior Calcaneal process
- Blood Supply

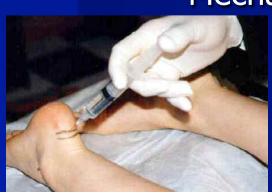
Achilles Tendon Pathology

- Achilles Tendinopathy
 - Peritendinitis
 - Tendinosis
 - Insertional vs. Non-insertional
- Chronic rupture
- Acute rupture

Pathogenesis

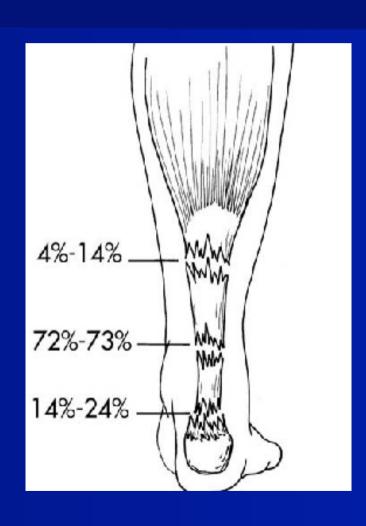
- Intrinsic Factors
 - General
 - Decreased perfusion
 - Systemic diseases
 - Gender/age/weight
 - Local
 - Valgus/Planus
 - Limb length

- Extrinsic Factors
 - General
 - Corticosteriods
 - Fluroquinolone
 - Drugs/narcotics
 - Sports
 - Training errors
 - Excessive loads
 - Environment


Epidemiology: Acute

- Gender
 - Males 2:1 over females
 - Carden '87
- Age
 - 30-45 and 70's
 - Pillet '72
- Industrialized countries
- Left > Right

Acute Rupture


- Intrinsic factors
- Extrinsic factors
- Spontaneous
 - Degeneration
 - Mechanical

Site of Rupture

- Myotendinous Jxn
- Midsubstance2-6 cm proximal to insertion
- Avulsion

Rupture Mechanism

- Direct trauma
- Pushing off with foot in PF, knee extended (concentric)
- Unexpected DF
 - At 8% tendon will fail

Diagnosis

- History
 - Male between 30 and 50 years
 - Sedentary job but in athletic activity
 - Weekend Warrior
 - Pop, "hit" in the back of the leg
 - Pain posteriorly in calf
 - Bruising
 - Pain is variable

Diagnosis

- Physical Exam
 - Palpable defect
 - Thompson Test
 - Tip-toe test
 - Bruising/Swelling
 - Weakness

Thompson Test

Positive Test: No PF

Diagnosis

- Diagnostic Tests
 - Xrays
 - Avulsion suspected
 - Ultrasound
 - Eval approximation
 - MRI
 - Complete rupture
 - Tendinosis

Goals of Treatment

- Define functional and athletic goals
- Prevent complications
- Optimize rapid return to <u>full</u> function
- Minimize morbidity

Treatment Options

Nonsurgical

?

Surgical

Cast Immobilization

?

Functional Bracing

Percutaneous

?

Open

		Surgical	Casts
	Morbidity	-	+
	Hospital Costs	_	+
_	Wound Problems	-	+
	Strength and Endurance	+	-
	Re-rupture Rate	+ (2%)	- (18%)

Nonsurgical: Cast

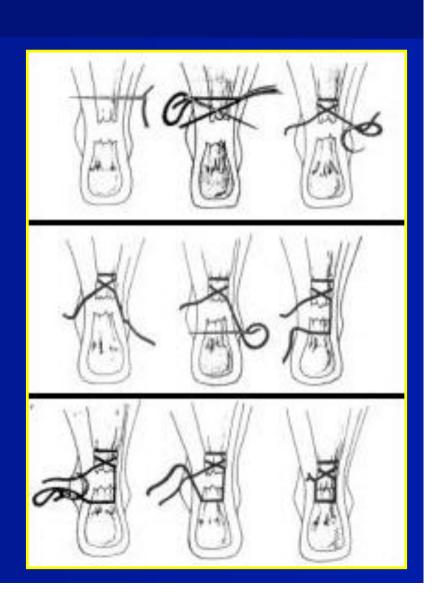
- Start early
- Equinus Casts
 - 4 weeks
- Bring to neutral
 - 4 to 6 weeks
- Heel lift
- Physical therapy

Nonsurgical: Functional Bracing

- Immobilization
 - 1 to 3 weeks
- Brace/Splint
 - Prevent dorsiflextion
 - Keep at 20° PF coapt ends
 - Full weightbearing

Cast vs. Functional

Higher re-rupture with casts

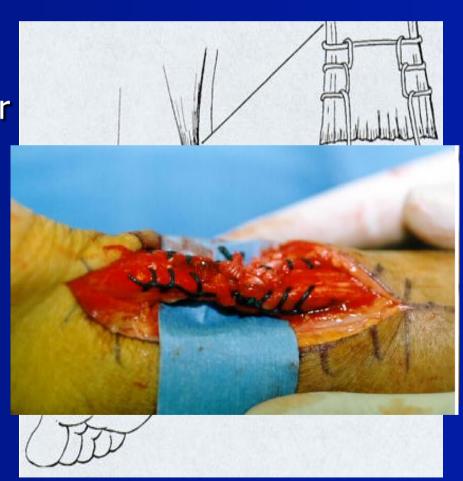

General Consensus: Cast

al)

- * Decreased calf circumference
- * Less plantarflexion power
- * Higher re-rupture rate
- - 50 patients randomized into cast or CAM
 - Re-rupture 17% in cast

Surgical: Percutaneous

- Ma and Griffith
 - 6 stab incisions
 - Less wound complications
 - Injury to sural nerve
 - Not anatomic
 - Tension hard to establish
- Guided instruments


Surgical: Open

- 10 to 14 days
 - Decreased swelling
 - Organization of mop ends
 - *Anatomic repair *Correct tension

Open Technique

- Central Incision
- Debride mop ends
- Direct suture repair
 - Krackow
 - Nonabsorbable
- Repair paratenon
- Augmentation
 - Turn down flap
 - FHL transfer
 - Plantaris
 - Synthetic material

Rehab

- Immobilization for 5 6 weeks
 - Equinus 4 weeks; Neutral 2 weeks
- Functional treatment
 - PT
 - Heel lifts
- Early WB
 - Maffulli Am J S Med 2003
 - Not detrimental to repair
 - No differ in strength
 - Less adhesions
 - Earlier time to work

Percutaneous vs. Open

- Less wound complications
 - Lim et al.
 - 33 patients
 - 7 infections
- Higher re-rupture rate
 - Wong et al.
 - 367 repairs
 - 12% re-rupture
 - Bradley
 - 12% perc vs. 0% open
- Greater Strength
 - Cetti
 - 111 patients

General Consensus: Perc

Less wound complications
Better cosmesis

General Consensus: Open

Return to preinjury level Decreased calf atrophy Better motion Less re-rupture

End to End Repair vs. Augmentation

- Strength of repair = suture technique
- Unwarranted
- Indications:
 - Late presenting rupture
 - Neglected ruptures
 - Re-ruptures

Surgical vs. Nonsurgical

Review articles that compared surgical and nonsurgical treatment of Achilles tendon rupture

Author and year of publication	Number of articles included (number of Achilles tendon ruptures)	Nonsurgical complication rate	Nonsurgical rerupture rate	Surgical complication rate	Surgical rerupture rate
Wills et al, 1986 [4]	20 (1003)	2/20 (10%)	40/226 (17.7%)	155/777 (19.9%)	12/777 (1.5%)
Cetti et al, 1993 [5]	66 (4597)	24/514 (4.7%)	69/514 (13.4%)	425/4083 (10.4%)	58/4083 (1.4%)
Lo et al, 1997 [6]	19 (990)	10/248 (4%)	29/248 (11.7%)	196/742 (26.4%)	21/742 (2.8%)
Popovic & Lemaire, 1999 [7]	16 (5046)	27/569 (4.7%)	76/569 (13.3%)	492/4477 (11.0%)	69/4477 (1.5%)
Wong et al, 2002 [3]	125 (5056)	62/645 (9.6%)	63/645 (9.8%)	976/4411 (22.1%)	103/4411 (2.3%)
Bhandari et al, 2002 [8]	6 (448)	0/210 (0%) ^a	29/233 (12.4%)	10/211 (4.7%)	7/225 (3.1%)
Kocher et al, 2002 [9]	32 (1893)	12/365 (3.3%)	29/347 (8.4%)	306/1487 (20.6%)	32/1437 (2.2%)
Khan et al, 2004 [10]	4 (356)	5/183 (2.7%)	23/183 (12.6%)	59/173 (34.1%)	6/173 (3.5%)

Conclusion

- Individualize patients
- Determine patient goals
- Promising percutaneous repair
- Conservative
 - Functional bracing
- Augmentation really not needed

Thank You