Ankle Anatomy and Exam
Goals and Objectives

- Better understand the prevalence of ankle injuries in athletics and its long term sequelae.
- Review the functional anatomy of the ankle.
- Review the clinical ankle exam and how to classify ankle sprains.
- Briefly discuss treatment of an acute ankle sprain.
Ankle Injury: What’s the problem?

- **Lateral ligament sprains**
 - the most frequent injury sustained by athletes
 - constitute 5-24% of all injuries sustained in an individual sport
 - produce 25% of all time loss due to an injury in football, b-ball, and CC

- **Lateral ligaments sprains**
 - account for 85% of grade-III ankle sprains
 - greater than 40% can potentially progress to chronic problems
Long term Sequelae of Sprains

- **Functional instability** and loss of normal ankle kinematics as a complication of ankle sprains may lead to chronic recurrent injury and early degenerative changes.

- Talar displacement of greater than 1mm reduces the ankle’s weight-bearing surface by 42%
Ankle Anatomy 101

- Review the following structures of the ankle joint
 - Osseous structures (bones)
 - Ligamentous structures
 - Tendons/muscles around the ankle
Bony Anatomy of Ankle

- Tibia and fibula bound together by the ant. & post. Tibiofibular ligaments and the interosseus membrane which runs between the long bones
- Collectively called the Syndesmotic ligament
The **Talus** is a wedged shaped bone
- Wider anteriorly than posteriorly
- Fits into the mortise formed by the bound tibia and fibula
- Allows plantar flexion and dorsi-flexion
Ligament Injuries

- **Lateral ankle sprains (85%)**
 - Plantar flexion and inversion

- **Syndesmotic sprains (10%)**
 - Dorsi-flexion and/or eversion

- **Medial ankle sprains (5%)**
 - Eversion
Lateral Ankle Ligaments

- Lateral complex
 - Ant. talofibular
 - calcaneofibular
 - Post. talofibular

- Syndesmosis
 - Ant. Inf. tibiofibular
 - Post.Inf. tibiofibular
Syndesmotic Structures

- Syndesmosis:
 - Ant. Inf. Tibiofibular ligament
 - Post. Inf. Tibiofibular ligament
 - Transverse tibiofibular ligament
 - Interosseous membrane
Medial Ankle Structures

- Major Ligament complex is called the **Deltoid Ligament**.
- It is the strongest of the ankle ligaments
- Navicular bone
 - post. Tibial tendon attaches
Major Functions of Ligaments

- Provide proprioceptive information for joint function
- Provide static stability to the joint and prevent excessive motion
- Act as guides to direct motion
Tendons of the Lateral Ankle

- **Peroneus brevis**
- **Peroneus longus**
 - Both serve as the major everters of the ankle
 - Also serve as plantar flexors
Ankle Tendons (medial side)

- **Major tendons**
 - **Anterior tibialis** (dorsi-flexor)
 - **Achilles tendon** (plantar flexor)
 - **Medial tendons**
 - **Posterior tibialis** (inverter and plantar flexor)
 - Flexor digitorum longus
 - Flexor hallucis longus
Anatomy Summary

• Osseous Structures (bare bones)
 – Tibia, fibula, talus

• Ligaments (static stabilizers)
 – Lateral, medial, syndesmotic

• Muscles/Tendons (dynamic stabilizers)
 – Plantar & Dorsi-flexors
 – Everters (peroneals)
 – Inverters (post & ant tibialis)
Clinical Exam of the Ankle

- History is always good!
 - What happened?
 - Which way did it bend?
 - Could you walk?
 - How much swelling/ecchymosis?
 - When did it happen?
 - What have you done for it?
 - Have you sprained it before?
Clinical Exam of Ankle

- Inspection & Palpation:
 - Most helpful during the acute phase
 - Remember your anatomy!
 - Palpate the structures you know
 - Boney prominences
 - Ligaments
 - Tendon insertions
Clinical Exam of the Ankle

- Check Range of Motion
 - Plantar and Dorsi-flexion
 - Inversion and Eversion
- Neurovascular status
- Strength?
 - Not helpful in the acute setting
- Ligamentous testing
 - May be very difficult to do in the acute setting
The Anterior Drawer

- Tests the integrity of the anterior talofibular ligament
Inversion Stress Test

- Tests the integrity of the calcaneo-fibular ligament
Evaluating for Syndesmotic injury

- 2 Tests for injury to the syndesmosis
 - The Squeeze test
 - External rotation test
Don’t forget the Achilles Tendon

- The Thompson Test
 - Tests the integrity of the Achilles tendon
 - Test patient prone with feet hanging off table
 • squeezing the gastrocnemius muscle should cause plantar flexion of the foot.....
 • If the Achilles tendon is intact!
 - It is poor form to miss this diagnosis
To X-ray or not to X-ray?

Let’s talk Ottawa Ankle Rules

- X-rays are indicated to rule out fx if:
 - Presents within 10 days of injury
 - Unable to bear weight at time of injury or in office
 - Tenderness of distal 6cm of malleoli on the post. Aspect.
 - Tenderness over the base of the 5th met or navicular bone
Classification of Ankle Sprains

- Several Classifications Exist based on:
 - Ligamentous injury and evidence of instability
 - Classification based on functional impairment
 - Number of ligaments involved
- Combination of the above
Grade I sprain (usually not seen in the office)

- **Ligament status**
 - partial tear of the ligament
 - mild tenderness and swelling
 - no instability on exam when stressing ligament

- **Functional status**
 - Slight or no functional loss
 - able to bear weight and ambulate with minimal pain
Grade II Ankle Sprain (what we will see a lot!)

- **Ligament Status**
 - Incomplete tear of the ligament
 - Moderate pain swelling and tenderness
 - Mild to mod. ecchymosis
 - Mild to moderate instability of the ligament

- **Functional status**
 - Some loss of motion and function
 - Patient has pain with weight-bearing and ambulation
Grade III Ankle Sprain

- Ligament Status
 - Complete tear and loss of integrity of a ligament.
 - Severe swelling (more than 4cm around the fibula)
 - Severe ecchymosis
 - Significant mechanical instability with ligament stressing

- Functional Status
 - Significant loss of function and motion
 - Patient is unable to bear weight or ambulate.
Prognosis inversely related to Grade

- **Grade I**
 - Require an avg. 11.7 days before full resumption of athletic activity

- **Grade II**
 - Require approximately 2-6 weeks

- **Grade III**
 - Avg duration of disability ranges 4.5-26 wks
 - Only 25-60% being symptom free 1-4 yrs after injury
Acute Treatment of Ankle Sprains

- **PRICEM**
- Protection: (orthosis or brace)
- Rest: limit wt. Bearing until non-painful
- Ice, Compression, and Elevation
 - Most important component acutely
 - Limiting inflammation and swelling has been shown to speed recovery
- Mobilize
 - early range of motion has also been shown to speed recovery
Ankle Braces
What does the Evidence show?

- What is the best treatment of Grade III sprains?
 - Meta-analysis of RCT’s from 1966-1998
 - outcomes
 - time lost, residual pain, and giving way
 - Recommendations for practice
 - Manage with aggressive functional tx or surgery followed by functional treatment
Additional Evidence

- What’s the best intervention to prevent ankle injuries?
- Cochrane Review 1997
 - 5 RCT/quasi-RCT
 - Concluded:
 - Found good evidence of a beneficial effect of semi-rigid orthosis or air-cast braces to prevent ankle sprains during high risk sports
 - Individuals with previous injuries showed greatest benefit.
Are Ankle Sprains Preventable

- *Meta-analysis by CDC of 113 studies*
- **Bottom line:**
 - The main risk factor for an ankle sprain is a previous injury.
 - Rehabilitating ankle sprains appears to prevent subsequent sprains.
Summary of Ankle Injuries

- Reviewed anatomy and clinical exam
- Ankle injuries are extremely common with high potential for long term sequelae.
- A thorough exam and early aggressive treatment including a rehabilitation program will lead to optimal results.