# Managing Overuse Injuries

# Objectives:

- Discuss the etiology of overuse injuries
- Describe common overuse injury forms
- Describe basic management principles
- Provide case study example of management

#### Important Concepts (STOMP, STOMP)

- Making an accurate patho-anatomic diagnosis is critical
- For every injury (victim) there are underlying causes (culprits)--not limited to just "overuse"
- Rest and NSAIDs alone do not heal
- Rehabilitative exercise is the cornerstone for healing



# Epi%\*#!@\*! of Overuse Injuries

50-65% of sports injuries seen in primary care are secondary to overuse.



# Two types of athletic injury

- <u>Macrotrauma</u>: specific episode of trauma with acute tissue disruption.
- <u>Overuse</u>: *micro*traumatic injury that results when an anatomic structure is exposed to a repetitive, cumulative force where the body's reparative efforts are exceeded and local tissue breakdown occurs.

# Profile of Microtraumatic Soft-Tissue Injury



## Key features of overuse injury

- Sub-clinical injury occurs before the patient feels it
- The normal soft-tissue repair process is aborted
- Degeneration cycle begins instead
- Soft-tissue degeneration is NOT inflammatory



# Etiology of Overuse Injuries

# KEY CONCEPT: VICTIM AND CULPRITS

• For every overuse injury (victim) there is an underlying cause (culprit)

### Examples of Victim and Culprits

Runner with knee pain

Culprit = inflexible iliotibial band; hill running
Victim = tender lateral femoral condyle

Athlete with Achilles tendinosis

Culprit = foot hyperpronation; old shoes
Victim = overstretched Achilles tendon

**Risk factors for Overuse Injury:** The Usual Culprits Intrinsic abnormalities • Extrinsic abnormalities Sports-imposed deficiencies

## Intrinsic abnormalities

- Mal-alignment of body parts
- Instability of joints
- Imbalance of muscle strength
- Weakness of muscles
- Inflexibility
- Rapid growth

# Examples of intrinsic abnormalities

- Foot morphology
  - high-arch (pes cavus) with highest risk (6x),
  - flatfoot (pes planus) with moderate risk
- Iliotibial band inflexibility-->ITB syndrome
- Genu valgum --> higher risk of PFS
- Rotator cuff weakness --> impingement

## Growth: example of intrinsic risk



ls of



-A

h

• Uni

• Mus

# Extrinsic abnormalities

- Training errors
- Equipment mismatch/failure
- Technique errors
- Environment factors

# Examples of Extrinsic risk factors

- Training error: running too fast, too soon
  Equipment mismatch: cycle poorly fitted, seat height incorrect
- Technique error: improper racquet swing
- Environment factor: running on pavement

# Sports-Imposed Deficiencies

#### 





"Musculoskeletal adaptations and injuries due to overtraining"

Kibler WB et al. *Exercise and Sports Sciences Review* 1992, Vol 20:99-126.

# Vicious Injury Cycle of Overload

- Tissue overload, leads to...
- Tissue injury, leads to...
- Functional biomechanical deficit, leads to...
- Adaptive change in technique
  - leads to more tissue overload, and the cycle continues



- 1. Muscular weakness
- 2. Inflexibility
- 3. Scar tissue
- 4. Muscle strength imbalance

#### **Example of overuse**

1. Tensile load on posterior shoulder muscles Musculotendinous tensile overload

Muscle damage

2. Micro-tears to Infraspinatus and Teres minor Clinical symptoms Decreased performance Substitute biomechanical movements 4. Alteration of throwing motions

#### **Subclinical adaptations**

3. External rotation strength imbalance

# History of Present Illness

- Date of onset
- Changes in routine
  - intensity of workouts
  - equipment
  - location of activity
- Aggravating/relieving activities
- History of interventions

Looking for culprits - think of the risk factors again Intrinsic abnormalities • Extrinsic abnormalities Sports-imposed deficiencies

### The concept of "Transition"

- "Transition" some change in the use of the involved body part
- Identify what changed before symptom onset
  - e.g. increased running mileage preceded knee pain
  - e.g. getting a new pair of boots/shoes led to plantar fascia pain

## **Evaluating biomechanics**

- Limb examination
  - Flexibility, ROM, strength, ligament stability,
     leg length
- Examine patient while standing
- Watch patient walk/run/swing racquet, etc.
- Consider referral
  - Video gait analysis
  - Ergonomist evaluation
  - Professional coach/trainer



# Assessing equipment

- Wear pattern of shoe solesHow well a device fits the user
- Proper use of device



## Common Overuse Injury Forms

- Musculoskeletal
  - Bone
  - Tendon
  - Muscle
  - Cartilage
  - Joint capsule
  - Nerve
  - Ligament
  - Bursa

- Non-Musculoskeletal
  - Overtraining Syndrome
  - Female Athlete Triad

# Examples of bone overuse injuries

- Stress fracture culprits:
  - muscle weakness
  - hypoestrogenemia
  - biomechanical problems
  - overtraining, etc.

## Tendon Overuse Injuries

- Tenosynovitis inflammation in the tendon sheath
- Paratenonitis inflammation of only the loose areolar tissue within the tendon compartment.
- Tendonitis symptomatic degeneration with vascular disruption and inflammatory repair.
- Tendinosis intra-tendinous degeneration from repetitive microtrauma; NON-inflammatory intra-tendoinous collagen degeneration.





#### Normal tendon



Tendinosis: collagen disruption and neovascularization

# Examples of muscle overuse injury

- Muscle strains
  - Culprits
    - prolonged overtraining
    - weakness
    - opposing muscle tightness

# Example of cartilage overuse injury

- Patellofemoral syndrome culprits:
  - hamstring inflexibility
  - relative quad weakness
  - hyperpronation
  - lateral patellar retinaculum tightness
  - overtraining


Examples of nerve overuse injuries • Tarsal tunnel syndrome culprits: - hyperpronation Tarsal - overtraining Tunnel – ganglions/lipomas Syndrome

©MMG 2001

Examples of ligament overuse injury

- Plantar fasciitis culprits:
  - Achilles inflexibility
  - pes cavus/planus, hyperpronation
  - worn-out running shoes
  - leg length discrepancy
  - overtraining
  - intrinsic foot muscle weakness



# Examples of bursa overuse injuries

Trochanteric bursitis culprits:

 iliotibial band inflexibility
 relative adductor weakness



# Example of mixed overuse injury

- Rotator cuff impingement
  - Muscle, tendon, bursa injury
  - Culprits:
    - RC weakness relative to deltoid
    - improper arm movements
    - overtraining
    - hooked acromion
    - Scapular dyskinesis



### Management of Overuse Injuries





- 1. Muscular weakness
- 2. Inflexibility
- 3. Scar tissue
- 4. Muscle strength imbalance

# Overuse Injury Management Pyramid

4. Fitness exercise

5. Control abuse

*barticipation* 

3. Promote healing

2. Control inflammation

1. Make accurate patho-anatomical diagnosis

# 1. Make accurate patho-anatomic diagnosis

- Accurate history
- Thorough physical examination
- Biomechanical evaluation
- Selected diagnostic tests

#### Possible diagnostic tests

- Plain radiographs
- Stress testing
- Selected lab tests
- Specialized tests
  - -Bone scan
  - MRI







# Overuse Injury Management Pyramid

3. Promote healing

4. Fitness exercise

5. Control abuse

*farticipation* 

#### 2. Control inflammation

1. Make accurate patho-anatomical diagnosis

# 2. Control of inflammation: "PRICEMM"

- P Protect
- R Rest (relative)
- I Ice
- C Compression
- E Elevation
- M Medications
- M Modalities

# PRICEMM: Protection

Protect body part from further injury

\*Splint
\*Padding







## PRICEMM: Relative Rest

- Cease abusive activity temporarily
- Should be active rest
- Limit immobilization to minimum
  - Prevents atrophy and loss of ROM

# PRICEMM: Ice

- Minimizes swelling
- Decreases pain
- Application:
  - 20 min
  - Every 3 hours
  - -3 days





## PRICEMM: Medications

#### • NSAIDs

- No scientific support for long-term benefit in overuse injury
- Adverse reactions common
- Probably only benefit is analgesic
  - consider other analgesics
- 7-14 days probably enough



# PRICEMM: Medications (cont.)

- Corticosteroids potent anti-inflammatory
  - Decrease collagen production and weaken tendons
  - Unclear role in overuse injury
  - Consider for:
    - Severe pain that limits rehabilitation
    - Refractory pain after other treatments
  - Limitations
    - Never into a tendon
    - Up to 3 times a year in one place



PRICEMM: Modalities

- Vague theoretic principles
- Analgesia
- ? Affect on inflammation
- May limit muscle spasm/atrophy







# Overuse Injury Management Pyramid

4. Fitness exercise

5. Control abuse

*farticipation* 

#### 3. Promote healing

2. Control inflammation

1. Make accurate patho-anatomical diagnosis

#### 3. Promote healing

- Therapeutic exercise
  - correct weakness or imbalance
- Healing injections
- Select surgical intervention



#### Therapeutic exercise



- Strength
- Flexibility
- Proprioception





#### Strength exercise types

- Isometric useful if ROM poor
- Isotonic
  - Concentric good initially once ROM restored
  - Eccentric enhances strength, repairs tendons
- Isokinetic



"Chronic Achilles tendinosis: recommendations for treatment and prevention."

Alfredson H et al. *Sports Medicine* 2000 Feb (29): 135-146.

- Patients had failed other treatments such as PRICEMM, casting, rest, stretching, etc.
- Progressive heavy-load <u>eccentric heel cord</u> <u>exercises</u> BID, 7d/wk, 12 weeks
- 2-year f/u: 14 of 15 patients able to resume running without pain



### **Therapeutic Injections**

Autologous bloodPlatelet-rich plasma







#### Surgical Intervention--Indications

- Failed quality rehabilitation
- Unacceptable quality of life
- Persistent pain



# Overuse Injury Management Pyramid

**4.** Fitness exercise

5. Control abuse

*farticipation* 

3. Promote healing

2. Control inflammation

1. Make accurate patho-anatomical diagnosis

#### 4. Fitness exercise

Aerobic exercise
Transition exercise
Sport-specific exercise

#### Aerobic exercise

- Enhances peripheral oxygenation to speed healing
- Enhances psychological well-being
- Enhances return to sport

## Aerobics









### Transition exercise

- Activities closer to the goal activity
- Less stress on injured body parts





### Sport Specific Exercise

 Training to fit the demands of sport, occupation, or hobby







# Overuse Injury Management Pyramid

5. Control abuse

participation

4. Fitness exercise

3. Promote healing

2. Control inflammation

1. Make accurate patho-anatomical diagnosis

#### 5. Control Abuse

- Modify extrinsic overload
   technique

  - training
- Bracing and taping
- Proper equipment



"Prevention of common overuse injuries by shock absorbing insoles."

Shwellnus NP, Noakes TD. American Journal of Sports Medicine 1990, Vol 18(6).

- Prospective study involving military recruits
- Neoprene insoles vs controls with none
- Pts with insoles had significantly lower incidence of:
  - Overuse injuries overall
  - Shin splints



# Overuse Injury Management Pyramid

Activity Participation

5. Control abuse

4. Fitness exercise

3. Promote healing

2. Control inflammation

1. Make accurate patho-anatomical diagnosis


#### The goal: Activity Participation

- Sports
- Recreation
- Fitness exercise

• Maintain ongoing rehab program

#### Case Study:

### 28 year old elite taekwondo athlete with heel pain



# 1. Make accurate patho-anatomic diagnosis

- History: abnormal transition increase in training volume (>10% per week)
- Physical exam: pain at insertion of plantar fascia near medial calcaneal tubercle
- Diagnosis: plantar fasciitis

#### But on closer exam:

- Gastro-soleus inflexibility and weakness
- Pes planus
- Excessive pronation
- Weak toe flexors
- Running shoes old, excessive wear on medial aspect of sole



# 2. Control inflammation (PRICEMM)

• Ice massage TID x 15 minutes

• 1 week course of NSAID

#### 3. Promote healing

Gastro-soleus stretching & strengtheningToe flexor strengthening

#### 4. Fitness exercise

- Deep-water running
  - Pain with walking and palpation gone 2 wks
- Resume running
  - No hills or speed work at first
  - Increase mileage 10% per week
  - Cross train in pool

#### 5. Control abuse

- Stop running initially; deep water running instead
- Fitted for orthotics
- New running shoes

### Returned to full training at 1 month

Continue flexibility and strength exercisesWon national championship 2006

#### Summary/Review

- Overuse injuries are the most common and most challenging in athletics
- For every "victim" there is a "culprit"
- The H&P remain the key elements in management (1. Make accurate patho-anatomic diagnosis)
- Rest and NSAIDs alone do not heal
- Rehabilitative exercise is the cornerstone for healing

